Models for the k-metric dimension

نویسندگان

  • Ron Adar
  • Leah Epstein
چکیده

For an undirected graph G = (V,E), a vertex τ ∈ V separates vertices u and v (where u, v ∈ V , u 6= v) if their distances to τ are not equal. Given an integer parameter k ≥ 1, a set of vertices L ⊆ V is a feasible solution if for every pair of distinct vertices, u, v, there are at least k distinct vertices τ1, τ2, . . . , τk ∈ L each separating u and v. Such a feasible solution is called a landmark set, and the k-metric dimension of a graph is the minimal cardinality of a landmark set for the parameter k. The case k = 1 is a classic problem, where in its weighted version, each vertex v has a non-negative weight, and the goal is to find a landmark set with minimal total weight. We generalize the problem for k ≥ 2, introducing two models, and we seek for solutions to both the weighted version and the unweighted version of this more general problem. In the model of all-pairs (AP), k separations are needed for every pair of distinct vertices of V , while in the non-landmarks model (NL), such separations are required only for pairs of distinct vertices in V \ L. We study the weighted and unweighted versions for both models (AP and NL), for path graphs, complete graphs, complete bipartite graphs, and complete wheel graphs, for all values of k ≥ 2. We present algorithms for these cases, thus demonstrating the difference between the two new models, and the differences between the cases k = 1 and k ≥ 2.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adjacency metric dimension of the 2-absorbing ideals graph

Let Γ=(V,E) be a graph and ‎W_(‎a)={w_1,…,w_k } be a subset of the vertices of Γ and v be a vertex of it. The k-vector r_2 (v∣ W_a)=(a_Γ (v,w_1),‎…‎ ,a_Γ (v,w_k)) is the adjacency representation of v with respect to W in which a_Γ (v,w_i )=min{2,d_Γ (v,w_i )} and d_Γ (v,w_i ) is the distance between v and w_i in Γ. W_a is called as an adjacency resolving set for Γ if distinct vertices of ...

متن کامل

On two-dimensional Cayley graphs

A subset W of the vertices of a graph G is a resolving set for G when for each pair of distinct vertices u,v in V (G) there exists w in W such that d(u,w)≠d(v,w). The cardinality of a minimum resolving set for G is the metric dimension of G. This concept has applications in many diverse areas including network discovery, robot navigation, image processing, combinatorial search and optimization....

متن کامل

The metric dimension and girth of graphs

A set $Wsubseteq V(G)$ is called a resolving set for $G$, if for each two distinct vertices $u,vin V(G)$ there exists $win W$ such that $d(u,w)neq d(v,w)$, where $d(x,y)$ is the distance between the vertices $x$ and $y$. The minimum cardinality of a resolving set for $G$ is called the metric dimension of $G$, and denoted by $dim(G)$. In this paper, it is proved that in a connected graph $...

متن کامل

A CHARACTERIZATION FOR METRIC TWO-DIMENSIONAL GRAPHS AND THEIR ENUMERATION

‎The textit{metric dimension} of a connected graph $G$ is the minimum number of vertices in a subset $B$ of $G$ such that all other vertices are uniquely determined by their distances to the vertices in $B$‎. ‎In this case‎, ‎$B$ is called a textit{metric basis} for $G$‎. ‎The textit{basic distance} of a metric two dimensional graph $G$ is the distance between the elements of $B$‎. ‎Givi...

متن کامل

The extension of quadrupled fixed point results in K-metric spaces

Recently, Rahimi et al. [Comp. Appl. Math. 2013, In press] defined the concept of quadrupled fied point in K-metric spaces and proved several quadrupled fixed point theorems for solid cones on K-metric spaces. In this paper some quadrupled fixed point results for T-contraction on K-metric spaces without normality condition are proved. Obtained results extend and generalize well-known comparable...

متن کامل

Fixed Point Theorems on Complete Quasi Metric Spaces Via C-class and A-Class Functions

In this paper, we present some fixed point theorems for single valued mappings on $K$-complete, $M$-complete and Symth complete quasi metric spaces. Here, for contractive condition, we consider some altering distance functions together with functions belonging to $C$-class and $A$-class. At the same time, we will consider two different type $M$ functions in contractive conditions because the qu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1410.4209  شماره 

صفحات  -

تاریخ انتشار 2014